MM1441

	Study program / course: Mechanical Engineering		
	Type and level of study: Master academic studies		
Course: Numerical simulation and optimization Lecturers: Jovičić M. Nebojša, Drspotović Z. Milan			
	Number of ECTS: 6		

Precondition: Mathematics, Thermodynamics, Fluid Mechanics

The objective of course:

- To introduce students with the basic elements of numerical approach in fluid mechanics and
- Getting skills for conducting of computational simulation and optimization of the real engineering processes in area of energy and process engineering by using commercial software tools.

The outcome of course

After finishing the course students will be able:

- To apply acquiring theoretical knowledge in mathematics, thermodynamics, and fluid mechanics,
- To design complex mathematical models and numerical algorithms for simulation of real-life problems in energy and process engineering,
- To conduct numerical simulations and analyze results obtained,
- To presents competently the results of numerical simulation by using appropriate multimedial tools.

Syllabus

Theoretical study

Introducing lecture. Basics of CFD. Mathematical modeling of physical problems.

Discretisation of physical space. Discretization of mathematical models. Heat conduction.

Convection and diffusion. Fluid flow. Simulation of separation process. Cyclones.

Simulation of turbomachinery fluid flow.

Practical classes

Heat conduction. Convection and diffusion. Fluid flow.

Simulation of separation process. Cyclons. Simulation of turbomachinery fluid flow.

Recommended reading

- 1. Jovičić N., Modeliranje i simulacija radnih procesa u hidrauličkim turbomašinama, Monografija, Legenda, Čačak, 2005
- 2. Petrović Z., Stupar S., Projektovanje računarom metod konačnih razlika, Univerzitet u Beogradu, 1996

The number of hours of active teaching:				Other classes:
Theory:	Practical classes:	Other forms of	Research study:	1
2	1.6	teaching: 0.4		
3.5 (3. 3. 0. 1.				

Methods of teaching

Evaluation of knowledge					
Pre-final exam obligations	Points	Final exam	points		
Activities during the classes:	10	Final exam	30		
Practical classes:					
Colloquiums(s):	30				
Project(s):	30				